Al and Mathematics

Most modern computers run on 64-bit architecture—i.e., they
have CPUs that can handle 64 separate binary bits of “data” (charges
or lack thereof) being fed into their registers at a time. This means that
the biggest exact integer they can handle is 2 to the 64t power--about
18 quintillion. This may sound large, but it is actually miniscule —in-
finitesimal, even--in comparison to what you can manage. In fact, in
a few seconds, you could write out two numbers on a sheet of paper,
both far larger than 18 quintillion (a quintillion has only eighteen ze-
roes), and in less than a minute, you could directly add them together
accurately and find their exact sum. Your computer cannot do this.

Now, if we are instead referring to “double-precision floating-
point” numbers that a 64-bit architecture can handle, this does in-
crease the magnitude of the numbers that the CPU can crunch, but
only at the cost of sacrificing the exactness and instead dealing with
an extremely rough approximation. Such a number can be as much as
almost 2 to the 308t power, but only seventeen or so of those hun-
dreds of digits will be meaningful. The remaining hundreds of digits
are null, and we humans are left to interpret that nullity as zeroes
which, as it were, “uphold” the magnitude of large number under
consideration. Even then, a human can easily manage numbers far
larger than this —and not with some approximation including only
seventeen meaningful digits, but with a perfect exposition of the entire
number.

To illustrate AI's total inability to deal with large numbers that
even a grade school child can manage, I asked a few of the most ad-
vanced Al systems available today to give the exact sum of two inte-
gers which were each one thousand digits long. None could do it.
Some gave an approximation, others said they could not compute it,
and still another gave an answer — to this extremely simple question
my nine-year-old could easily get correct within minutes —that was
completely wrong to a comical degree.!

When [ fed a far easier addition problem into Microsoft Excel
(consisting of less than one hundred digits for each number), it pre-
tended to give an answer. But when I directed it to show me the digits
it had hidden, they were absent; all replaced with zeroes. It had sur-
reptitiously (giving no error message or warning) chopped off almost
all the input I provided, and instead only added together the first
dozen or so digits, leaving the remaining ones occluded by exponen-
tial notation.



Depending upon the question you ask of it, there are times
when an Al might seem to display an understanding of these con-
cepts, but it is in fact only regurgitating some answer it scraped from
a human-authored text. In other cases, there are of course worka-
rounds. A human programmer, cognizant of this fundamental com-
putational limitation, can direct an algorithm to chop up a large
number into parts, deal with those separately, then stick them back
together, so that the end user is given the impression of the Al actu-
ally dealing directly with the large numbers, when in fact it is not.

Moreover, real math problems —word problems--always begin
as philosophy problems, for they simply recount some potential real-
life situation, which one must abstractly consider, compare to logical
axioms and common sense, and only then generate a formula to
model it. After this formula is presented, an Al can often seamlessly
solve it. But generating that formula in the first place is what requires
intelligence, not solving it. Al-driven LLMs (ChatGPT, etc.) are terri-
ble at these, since they cannot abstractly ponder what is being de-
scribed. Now, it often appears that they do an excellent job at word
problems, simply because they are fed word problems whose solu-
tions are already in their database.

It can sometimes be difficult to notice just how incompetent Al
is at solving word problems since databases containing massive
amounts of them (along with their solutions) heavily populate the
material they scrape. Sample tests of innumerable sorts, along with
their solution manuals, have long been popular internet uploads, and
there are untold billions of human-authored word problems and so-
lutions in these texts. Most LLMs have archived all of these in their
own massive databases.

Therefore, if you simply feed some Chatbot a word problem
you have stumbled upon in a text or on the internet, it is likely that
problem already exists in its database. If you merely change the num-
bers or the words (e.g., “four apples” instead of “five oranges,”) the
Al can still use basic search-engine techniques to identify sufficient
similarity and regurgitate the answer it plagiarized from a human
problem solver, along with those superficial replacements. If, how-
ever, you are in the habit of feeding descriptions of actual real-world
problems you come across (not basic textbook ones with available so-
lutions in databases), the solving of which requires understanding
and critical thinking, you will quickly discover that all Al systems
completely lack any intelligence.

If, moreover, you happen to pose a word problem to an Al
which lacks a sufficiently similar one (with a solution) in that AI’s da-
tabase, you will only be given comically errant results. As I was writ-
ing this section, I walked over to my bookshelf and grabbed the first



textbook I saw from my engineering studies. It happened to be one
on the design of machinery. I opened a random page, selected one of
its simplest problems, and entered it into one of today’s most power-
ful AI LLMs. The question was this: “Design a simple, spur gear train for
a ratio of -9:1 and diametral pitch of 8. Specify pitch diameters and numbers
of teeth. Calculate the contact ratio.”2

Now, a “spur gear” is just the most basic type of gear anyone
has understood since childhood. One need not be an engineer to un-
derstand some things about their operation; for example, they obvi-
ously need at least several teeth, and adjacent ones in a train of such
gears rotate in opposite directions. Even a toddler playing with a plas-
tic gear toy begins understanding this. This “ultra powerful Al,” how-
ever, “solved” that problem by telling me that the pinion (the smaller
gear in the simple train) should have negative nine teeth, the larger
gear should have one tooth, and the contact ratio between the two
will be negative 72.3

None of this is even coherent, much less correct. No human, no
matter how ignorant of spur gear engineering, would answer a ques-
tion about their design by positing that such a gear should have a
negative number of teeth, or one tooth. And no human who, being
told the definition of a “contact ratio” (the average number of teeth in
contact with each other on adjacent gears at a given moment), would
claim that this ratio could be such an outlandish ratio as “negative
72.” (The ratio is generally between 1 and 2 and cannot be far from
that range, and it certainly cannot be of a greater magnitude than the
number of teeth!)

Observe that the problem here is not merely that we are dealing
with a program that could not answer the question. The problem is
that it did indeed present a “solution.” It did so with the appearance
of great confidence, assuring me that what it described was indeed
“the design” I had requested, but as a machine, it was entirely oblivi-
ous to the fact that it had no clue what it was doing and was present-
ing an answer not only errant, but incoherent.

L https:/ /dsdoconnor.com/aitest/

2 Robert L. Norton. Design of Machinery. An Introduction to the Synthesis and Anal-
ysis of Mechanisms and Machines. 2008. 4* Edition. Page 523. Question 9-6.

3 https:/ /dsdoconnor.com/aitest/



